Effectiveness of Hyperbaric Oxygen Therapy for the Management of Chronic Osteomyelitis: A Systematic Review of the Literature

Olga D. Savvidou, MD, PhD; Angelos Kaspiris, MD, PhD; Ioanna K. Bolia, MD; George D. Chloros, MD; Stavros D. Goumenos, MD; Panayiotis J. Papagelopoulos, MD, DSc, FACS; Sotirios Tsiodras, MD, MSc, PhD

abstract

Hyperbaric oxygen has been used as an adjunctive measure in the treatment of chronic osteomyelitis. The aim of this systematic literature review was to analyze the outcome and the complications of hyperbaric oxygen for chronic osteomyelitis. Forty-five of 96 studies reporting the use of hyperbaric oxygen for 460 patients with chronic osteomyelitis met the inclusion criteria and were analyzed qualitatively. All patients previously received antibiotics and surgical debridement. Mixed bacterial flora was detected in most of the studies. *Staphylococcus aureus* was the isolated pathogen in 12 (60%) of the 20 cohort and in 4 (20%) of the 20 case studies. Adjuvant hyperbaric oxygen was effective in 16 (80%) of the 20 cohort and 19 (95%) of the 20 case studies. Overall, 308 (73.5%) of 419 patients with complete data had a successful outcome and no reported relapse. Available evidence supports a potentially beneficial role of adjunctive hyperbaric oxygen, especially in refractory cases of chronic osteomyelitis. [Orthopedics. 2018; 41(4):193-199.]

hronic osteomyelitis is considered one of the most difficult orthopedic conditions to treat, despite significant progress being made with surgery and antibiotic therapy in the past decade.¹ Successful management of chronic osteomyelitis usually requires a combination of multiple surgical interventions at the affected bone site coupled with stabilization through a variety of methods, closure

of dead space, soft tissue flap coverage, and bone reconstruction followed by the administration of antibiotics either locally or systemically.² Susceptibility testing of the microorganisms cultured from the infected site guides antibiotic administration.³ Because efficient concentrations at the site of infection may be obtained for only a short period, antibiotic therapy may not always lead to long-term arrest of the disease.⁴ Delivery at the local level via various vehicles has been effective in the management of refractory cases.^{5,6} Nevertheless, failure of an antibiotic treatment is not uncommon.^{7,8}

Intermittent hyperbaric oxygen has been proposed as an adjuvant treatment option for chronic osteomyelitis. The

The authors are from the First Department of Orthopedic Surgery (ODS, IKB, GDC, SDG, PJP) and the Fourth Department of Internal Medicine (ST), National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University General Hospital, Athens; and the Laboratory of Molecular Pharmacology (AK), School of Health Sciences, University of Patras, Patras, Greece.

Dr Papagelopoulos is a previous Blue Ribbon Article Award recipient (Orthopedics, May/June 2018.)

Drs Savvidou and Kaspiris have contributed equally to this work and should be considered as equal first authors.

The authors have no relevant financial relationships to disclose.

Correspondence should be addressed to: Olga D. Savvidou, MD, PhD, First Department of Orthopedic Surgery, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University General Hospital, 1 Rimini St, 12462 Chaidari, Athens, Greece (olgasavvidou@gmail. com).

doi: 10.3928/01477447-20180628-02

European Society of Clinical Microbiology and Infectious Diseases Study Group on Biofilms currently investigates the benefits of hyperbaric oxygen in the management of biofilm infections.⁹

Hyperbaric oxygen therapy is defined as the inhalation of 100% oxygen at pressures above the normobaric pressure of 101.3 kPa measured at sea level.¹⁰ This leads to a significant increase in the tissue partial oxygen pressure and in the arterial blood oxygen pressure.¹⁰ Hyperbaric oxygen counteracts the hypoxia-related inhibition of angiogenesis by inducing neovascularization; it promotes the mobilization of vasculogenic and progenitor cells from bone marrow in either healthy human subjects or diabetic patients and in those treated with radiation.11-13 Furthermore, hyperbaric oxygen reduces tissue edema by suppressing the expression of pro-inflammatory cytokines,14 activates macrophage chemotaxis, increases the bactericidal activity of leukocytes,15 and inhibits toxin production.¹⁶ Finally, hyperbaric oxygen prevents tissue reperfusion injuries by inhibiting the neutrophil B2-integrin adhesion without an adverse effect on the antibacterial function of the neutrophils.14

Hyperbaric oxygen has been widely used in the treatment of chronic osteomyelitis during the past few decades. However, a clear appraisal of its effectiveness is lacking. The aim of this study was to systematically review and evaluate published studies on the overall efficacy and possible complications of hyperbaric oxygen for the treatment of chronic osteomyelitis.

MATERIALS AND METHODS

A systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.^{17,18} The following databases were thoroughly searched: Medline (via PubMed), Web of Science, the Cochrane Library, Embase, Ovid, Google Scholar, and the World

Health Organization International Clinical Trials Registry. The search methodology was performed using the following combination of terms: "chronic osteomyelitis [all fields]," "hyperbaric oxygen [all fields]," and "treatment [all fields]." The titles and the abstracts of the studies were identified and reviewed independently by 2 of the authors (O.D.S., A.K.), who used predefined criteria to select the relevant publications. Inclusion criteria were as follows for the human studies: (1) an appropriate description of the etiology and pathogenesis of the disease; (2) reporting of the pathogen associated with chronic osteomyelitis development; (3) description of the treatment and follow-up protocol used; and (4) reporting of the final outcome of the therapeutic approach (ie, success vs failure). Case reports were reviewed and are reported separately from other types of studies. All articles in English published in peer-reviewed journals were considered. Articles in languages other than English, literature reviews, technical notes, and letters to the editor or expert opinion publications were excluded. Articles with insufficient details regarding type of infection, therapeutic procedure, follow-up, and clinical outcome were also excluded.

The Cochrane Collaboration's tool was used to assess the quality of the studies to ascertain the risk of bias in nonrandomized studies. For each study, patient selection, methodology, follow-up, data, and other issues that could be characterized as having a risk for bias were evaluated. These were defined as low risk, moderate risk, high risk, or unclear risk.^{1,19}

For further minimization of selection bias, all articles were reviewed a third time and then assessed and discussed by all of the authors. If a disagreement occurred regarding the inclusion and exclusion criteria, the senior author (S.T.) made the final decision. Data extraction was performed and data were recorded independently by all of the researchers. Study design, demographic characteristics, surgical intervention, causative microorganism, disease severity, and treatment effectiveness and safety were recorded. Animal studies were examined separately from human studies.

RESULTS

The literature search and cross-referencing resulted in a total of 96 references. On evaluation, 51 articles were excluded and 45 articles were retained. These consisted of 14 retrospective and 6 prospective cohort studies (**Table A**, available in the online version of the article),²⁰⁻³⁹ 20 case reports (**Table B**, available in the online version of the article),⁴⁰⁻⁵⁹ and 5 animal studies (**Table C**, available in the online version of the article).⁶⁰⁻⁶⁴ The included studies were published between 1971 and 2017.

Experimental Models

Five studies examined the use of hyperbaric oxygen in an experimental model of chronic osteomyelitis (Table C). All studies examined Staphylococcus aureusassociated chronic osteomyelitis.60-64 One study additionally examined the effectiveness of hyperbaric oxygen for implant-associated chronic osteomyelitis caused by the gram-negative pathogens Klebsiella species and Pseudomonas species known to be implicated in biofilm formation.⁶¹ In 4 animal experiments, the effectiveness of hyperbaric oxygen was increased when it was used in combination with systemic antibiotics.^{60,62,63} Hyperbaric oxygen for implant-associated chronic osteomyelitis led to contradictory results.^{60,62} Regarding surrogate laboratory parameters evaluating inflammation, 1 animal study reported that hyperbaric oxygen therapy led to a reduction of oxidative stress and inflammatory indices, revealing a potential pathophysiologic explanation for the positive effect of hyperbaric oxygen.60

Human Data

Twenty cohort studies and 20 case studies examined the effectiveness of hy-

perbaric oxygen for chronic osteomyelitis. A total of 460 patients treated with hyperbaric oxygen were identified. Overall, 308 (73.5%) of 419 patients with complete data had a successful outcome and no reported relapse.

Only 4 studies reported the grade of chronic osteomyelitis according to the Cierny Mader system, classifying 3 patients as having grade II, 26 patients as having grade III, and 30 patients as having grade IV. In addition, only 1 study described the severity of the concurrent pedal ulcers with the calcaneal chronic osteomyelitis in diabetic patients based on the Wagner classification, with 11 patients having grade II and 12 having grade III.

The follow-up period was reported in 27 studies, being a mean of 28.3 months (range, 1-108 months).

The anatomic locations of chronic osteomyelitis, in order of frequency, were as follows: (1) the mandible (62 patients); (2) the tibia/fibula (58 patients); (3) the spine (32 patients); (4) the jaw (30 patients); (5) the hip joint (28 patients); (6) the femur and the calcaneus (23 patients each); (7) the sternum (16 patients); (8) the elbow (14 patients); (9) the pelvis (6 patients); (10) the chest and the humerus (5 patients each); (11) the foot and the ankle (3 patients); (12) the sinus and the temporal bone (3 patients); and (13) the knee joint (2 patients). In 2 studies, the exact location was not clarified. In 3 patients, chronic osteomyelitis developed in more than 1 site (Tables A-B).

Staphylococcus aureus was the predominant pathogen associated with chronic osteomyelitis in the studies reviewed (**Tables A-B**). Other implicated pathogens included streptococci species, *Pseudomonas aeruginosa*, *Proteus* species, enterococci, *Escherichia coli*, and other microorganisms (gram-positive cocci [eg, *Staphylococcus epidermidis*, *Propionibacterium acnes*]; gram-negative pathogens [eg, *Klebsiella* species, *Serratia* species]; anaerobes [eg, clostridia species]; and fungi-like *Candida* species, *Saccharomyces cerevisiae*, and *Rhizopus* species). Mixed flora was also isolated. In 3 studies, the infective organism was not reported.^{22,32,33}

Sixteen cohort studies^{2,21-23,27-31,33-39} and 19 case studies^{40-43,45-48,50-59} reported increased rates of successful treatment when combining hyperbaric oxygen with intravenous antibiotics and surgical debridement. Three studies reported the resolution of chronic osteomyelitis with hyperbaric oxygen plus surgical intervention²⁰ or hyperbaric oxygen plus antibiotic administration.^{26,32} Two studies reported that the extra hyperbaric oxygen application did not improve the results of surgical and antibiotic treatment.24,49 In 1 case study, where no surgical intervention was undertaken, hyperbaric oxygen did not lead to any clinical improvement.44 In 29 (6.3%) of 458 patients, failure of the hyperbaric oxygen treatment was reported.^{20,22,24,25,27,28,34,37,49} In 20 (4.4%) of 458 patients, recurrence of chronic osteomyelitis was observed.

Failure of hyperbaric oxygen treatment was reported in 7 cases of *Staphylococcus aureus*–associated chronic osteomyelitis,^{25,28,37} 6 cases with *Pseudomonas aeruginosa*,^{20,25,31,34} 5 cases with mixed bacterial flora,^{20,24,27,28,31} and 1 case each with isolation of *Escherichia coli*³⁴ and *Serratia marcescens*.³⁷ Finally, in 9 patients for whom hyperbaric oxygen failed, culture did not reveal any bacteria.^{22,31,37,49}

Few occurrences of adverse events were noted. Middle ear barotrauma and ear or sinus pain were most commonly reported,^{36,38} followed by changes in visual acuity in 2 patients³⁴ and cataract development in 1 patient.⁶⁵ In 1 case, hyperbaric oxygen was discontinued due to the development of convulsions.³⁹

All of the studies were either prospective or retrospective case series or case reports. Compared with randomized clinical trials, these study designs are prone to selection bias. Only 1 study used a control group.²³ No study tested the outcome statistically. The mean quality assessment score of the studies was low, indicating that their quality was fair. The weakness of the methodology quality and the low assessment score indicated increased risk of bias. There were not significant differences between the mean values of the scores estimated by the 2 examiners. The summary of the potential biases is presented in **Table D**, available in the online version of the article.

DISCUSSION

To the best of the authors' knowledge, this is the first systematic review focusing on the impact of hyperbaric oxygen in the treatment of chronic osteomyelitis. Despite the fact that the design of the studies included in this review was not optimal to identify the efficacy of hyperbaric oxygen for chronic osteomyelitis, it appeared that the combination of hyperbaric oxygen, intravenous antibiotics, and surgical debridement led to remarkable improvement in clinical and laboratory findings in both animal models and human studies.

Experimental models evaluated in this study used Staphylococcus aureus as the implicated pathogen (ie, the main pathogen evaluated in most human studies). Staphylococcus aureus is known to be a significant pathogen in chronic osteomyelitis. In animal models, hyperbaric oxygen was always used in combination with antibiotics61,64 or ozone.61 Effects on local and systemic inflammation were highlighted in some of these experiments as mediating the therapeutic effect of hyperbaric oxygen. Hyperbaric oxygen not only reduced the histopathological score and the bacterial count of chronic osteomyelitis but also decreased the oxidative (malondialdehyde, superoxidase dismutase, and glutathione peroxidase) and inflammatory (interleukin-1ß, interleukin-10, and tumor necrosis factor- α) indices.⁶¹ However, these effects could work both ways; in some reports, hyperbaric oxygen was associated with either a delayed improvement of outcome with antibiotic treatment⁶⁰ or bacterial growth stimulation⁶² in implant-associated chronic osteomyelitis. Nevertheless, in implant infections, surgical debridement probably has the primary therapeutic role.

In human subjects, the results of this systematic review indicated that hyperbaric oxygen had at least a moderate beneficial effect on the management of posttraumatic and postoperative chronic osteomyelitis. In spinal,²¹ tibial,³¹ or femoral²⁷ chronic osteomyelitis caused by either gram-positive or gram-negative bacteria, adjuvant hyperbaric oxygen often resulted in eradication of the infection, even after the failure of antibiotics.²¹ Hyperbaric oxygen therapy was additionally moderately effective in patients who developed chronic osteomyelitis after closed and open fractures³⁴ or trauma of various etiologies (eg, war) or after orthopedic operations such as hip arthroplasty.³⁷ Adjuvant hyperbaric oxygen resulted in complete healing of not only the patients with lower extremity chronic osteomyelitis but also the patients with chest, sinus, and mandible chronic osteomyelitis.33,35,38,39,43,48,53,58,59 This beneficial effect may be attributed to either neovascularization of the ischemic tissues or the hyperoxygenation that results in the direct suppression of anaerobic bacteria and stimulation of leukocytes.66

Sternal infection and osteomyelitis in patients undergoing cardiothoracic surgery increases the mortality rate.⁶⁷ Hyperbaric oxygen is considered a safe adjuvant treatment for sternal chronic osteomyelitis of gram-positive, gram-negative, or mycobacterial etiology, minimizing the intensive care unit stay.^{23,47,52,54,57}

In diabetic patients, vascular insufficiency is the major reason for secondary chronic osteomyelitis infection. This is due to severe ulcers of the lower extremities, which lead to amputation. The combination of hyperbaric oxygen, surgical debridement of the necrotic tissues, and intravenous antibiotics may prevent amputation in difficult cases of *Pseudomonas aeruginosa*–associated chronic osteomyelitis²⁰ or in the absence of an effective antibiotic regimen.⁴²

In immunocompromised patients and in children, chronic osteomyelitis is usually caused by hematogenous spread. Hemodialysis-dependent patients have high rates of chronic osteomyelitis because of phagocyte dysfunction.⁶⁸ Although the use of hyperbaric oxygen in these populations is controversial,²⁴ the reviewed reports indicated that adjuvant hyperbaric oxygen can lead to remarkable clinical improvement²⁵ or complete recovery.²⁹

The effectiveness of hyperbaric oxygen therapy has also been studied in osteopetrosis, which is a rare genetic disease caused by metabolic imbalances and complicated by chronic osteomyelitis in approximately 10% of patients.^{40,41} The combination of surgical debridement⁴⁰ or endoscopic lavage⁴¹ of the necrotic tissue and hyperbaric oxygen has been associated with increased success rates, even in the absence of high doses of antibiotics.⁴¹ Nevertheless, in such difficult cases, when a combination of surgical and antibiotic treatment fails, hyperbaric oxygen is controversial.⁴⁹

In addition to adjuvant hyperbaric oxygen, other factors, such as the secure immobilization of the infected area27,28 and the removal of the infected implants, may contribute to a successful outcome in difficult cases of chronic osteomyelitis. The combination of hyperbaric oxygen, antibiotics, and debridement³⁵ with full or partial removal of internal^{35,48,53} or external²⁰ fixation devices and hardware^{23,30,37,47,50,52,54,57} was correlated with increased clinical improvement. The exact contribution of hyperbaric oxygen in such cases, which are almost always complicated by biofilm development, is difficult to elucidate. In vitro studies have shown that hyperbaric oxygen can be used as an adjuvant to ciprofloxacin on biofilms caused by Pseudomonas aeruginosa, enhancing the bactericidal activity of ciprofloxacin.^{69,70} Although there is an increasing acceptance of the advantages of hyperbaric oxygen on biofilm infections, its use remains controversial.

In this study, hyperbaric oxygen therapy was found to be generally safe and well tolerated; most of the side effects reviewed were mild and reversible. Awareness is necessary because, in a few of the cases, potentially severe side effects (eg, barotrauma, seizures, congestive heart failure and pulmonary edema, and infantile purpura fulminans and pulmonary toxicity) were reported. Some additional minor adverse events were found with the use of hyperbaric oxygen, including transient vision changes, occasional earache and sinus pain in patients with colds or allergies that resolved after their symptomatic treatment with decongestants³⁸ or application of tympanostomy tubes,³⁴ and cataract development.³⁹ Minor symptoms improved shortly after the interruption of hyperbaric oxygen.³²

The most serious contraindication to using hyperbaric oxygen is the suspicion of an untreated or undiagnosed pneumothorax. Relative contraindications include any febrile illness that may potentially cause reduction of the central nervous system seizure threshold, poorly controlled seizure disorder, hyperthyroidism, congestive cardiac failure, chronic obstructive pulmonary disease, and claustrophobia.71 Concurrent administration of hyperbaric oxygen with chemotherapeutic agents such as doxorubicin, bleomycin, or cisplatin should be avoided because of their interference in mechanisms of free oxygen radical scavenging. On the other hand, malignancy is not a contraindication for hyperbaric oxygen use, as hyperbaric oxygen is not implicated in the induction of tumor growth or cancer pathogenesis.72 It was reported that hyperbaric oxygen use in patients with a malignancy was not associated with cancer expansion or recurrence.46

Cost-effectiveness issues may counteract the beneficial effect of adjuvant hyperbaric oxygen for chronic osteomyelitis identified in this review; no studies exist regarding this. Compared with standard of care treatment, adjuvant hyperbaric oxygen therapy was cost-effective in studies of its therapeutic use for diabetic ulcers.73,74 In these studies, hyperbaric oxygen therapy correlated with an increased quality-adjusted life years index and a lower proportion of major amputation. When considering financial gains for a relatively expensive therapy, direct and indirect medical costs need to be addressed, such as savings in wound dressing materials, hospital admissions, travel, and rehabilitation. These have been favorably affected in diabetic ulcer and chronic wound studies.75 Treatment for diabetic ulcers and treatment for chronic osteomyelitis have many similarities.

The major limitation of this review was the heterogeneity of the included studies, which made their accurate comparison difficult. More specifically, great variability in treatment protocols, selection criteria, and follow-up periods and missing classification of disease severity and statistical analysis of the outcomes and recovery rates were observed. Other limitations of this review included the large number of case reports, the low level of evidence, and the small number of patients in the included surveys. Finally, a significant amount of the data were derived from studies before 2000. Thus, considerable information about the current treatment protocols is lacking.

CONCLUSION

Hyperbaric oxygen appears to be a safe and potentially useful adjunctive intervention for the management of chronic osteomyelitis of various etiologies. Hyperbaric oxygen combined with other important therapeutic interventions, such as antibiotics and/or surgical debridement, was associated with high recovery rates of chronic osteomyelitis, especially when followed by a secure stabilization of the bone and removal of the infected implant. Nevertheless, quality data regarding this finding are scarce. Randomized controlled trials should be conducted to investigate the efficacy of hyperbaric oxygen for chronic osteomyelitis.

REFERENCES

- Geurts J, Hohnen A, Vranken T, Moh P. Treatment strategies for chronic osteomyelitis in low- and middle-income countries: systematic review. *Trop Med Int Health*. 2017; 22(9):1054-1062.
- Salvana J, Rodner C, Browner BD, Livingston K, Schreiber J, Pesanti E. Chronic osteomyelitis: results obtained by an integrated team approach to management. *Conn Med.* 2005; 69(4):195-202.
- Swiontkowski MF, Hanel DP, Vedder NB, Schwappach JR. A comparison of short- and long-term intravenous antibiotic therapy in the postoperative management of adult osteomyelitis. *J Bone Joint Surg Br.* 1999; 81(6):1046-1050.
- Yamashita Y, Uchida A, Yamakawa T, Shinto Y, Araki N, Kato K. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. *Int Orthop.* 1998; 22(4):247-251.
- Garvin K, Feschuk C. Polylactide-polyglycolide antibiotic implants. *Clin Orthop Relat Res.* 2005; 437:105-110.
- Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. *Drugs*. 2000; 59(6):1223-1232.
- Okada M, Kamano M, Uemura T, Ikeda M, Nakamura H. Pedicled adipose tissue for treatment of chronic digital osteomyelitis. J Hand Surg Am. 2015; 40(4):677-684.
- Maffulli N, Papalia R, Zampogna B, Torre G, Albo E, Denaro V. The management of osteomyelitis in the adult. *Surgeon*. 2016; 14(6):345-360.
- Høiby N, Bjarnsholt T, Moser C, et al; and ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. *Clin Microbiol Infect*. 2015; 21(suppl 1):S1-S25.
- Tibbles PM, Edelsberg JS. Hyperbaricoxygen therapy. N Engl J Med. 1996; 334(25):1642-1648.
- Howard MA, Asmis R, Evans KK, Mustoe TA. Oxygen and wound care: a review of current therapeutic modalities and future direction. *Wound Repair Regen.* 2013; 21(4):503-511.
- Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. *Antioxid Redox Signal*. 2014; 21(11):1634-1647.
- 13. Thom SR, Milovanova TN, Yang M, et al. Vasculogenic stem cell mobilization and

wound recruitment in diabetic patients: increased cell number and intracellular regulatory protein content associated with hyperbaric oxygen therapy. *Wound Repair Regen.* 2011; 19(2):149-161.

- 14. Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. *Plast Reconstr Surg.* 2011; 127(suppl 1):131S-141S.
- Stoekenbroek RM, Santema TB, Legemate DA, Ubbink DT, van den Brink A, Koelemay MJ. Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review. *Eur J Vasc Endovasc Surg.* 2014; 47(6):647-655.
- Van Unnik AJM. Inhibition of toxin production in *Clostridium perfringens* in vitro by hyperbaric oxygen. *Antonie Van Leeuwenhoek*. 1965; 31:181-186.
- 17. Moher D, Shamseer L, Clarke M, et al; and PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev.* 2015; 4:1.
- Shamseer L, Moher D, Clarke M, et al; and PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ*. 2015; 350:g7647.
- Higgins JPT, Deeks JJ. Selecting studies and collecting data. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. London: The Cochrane Collaboration; 2011.
- Akkurt MO, Demirkale I, Öznur A. Partial calcanectomy and Ilizarov external fixation may reduce amputation need in severe diabetic calcaneal ulcers. *Diabet Foot Ankle*. 2017; 8(1):1264699.
- Onen MR, Yuvruk E, Karagoz G, Naderi S. Efficiency of hyperbaric oxygen therapy in iatrogenic spinal infections. *Spine (Phila Pa* 1976). 2015; 40(22):1743-1748.
- Skeik N, Porten BR, Isaacson E, et al. Hyperbaric oxygen treatment outcome for different indications from a single center. *Ann Vasc Surg.* 2015; 29(2):206-214.
- 23. Yu WK, Chen YW, Shie HG, Lien TC, Kao HK, Wang JH. Hyperbaric oxygen therapy as an adjunctive treatment for sternal infection and osteomyelitis after sternotomy and cardiothoracic surgery. J Cardiothorac Surg. 2011; 6:141.
- Saarinen RT, Kolho KL, Kontio R, Saat R, Salo E, Pitkäranta A. Mandibular osteomyelitis in children mimicking juvenile recurrent parotitis. *Int J Pediatr Otorhinolaryngol.* 2011; 75(6):811-814.
- Chen CY, Lin KP, Lu SH, Chen YJ, Lin CF. Adjuvant hyperbaric oxygen therapy in the treatment of hemodialysis patients with chronic osteomyelitis. *Ren Fail.* 2008; 30(2):233-237.
- 26. Lentrodt S, Lentrodt J, Kübler N, Mödder

U. Hyperbaric oxygen for adjuvant therapy for chronically recurrent mandibular osteomyelitis in childhood and adolescence. *J Oral Maxillofac Surg.* 2007; 65(2):186-191.

- Chen CE, Ko JY, Fu TH, Wang CJ. Results of chronic osteomyelitis of the femur treated with hyperbaric oxygen: a preliminary report. *Chang Gung Med J.* 2004; 27(2):91-97.
- Chen CE, Shih ST, Fu TH, Wang JW, Wang CJ. Hyperbaric oxygen therapy in the treatment of chronic refractory osteomyelitis: a preliminary report. *Chang Gung Med J.* 2003; 26(2):114-121.
- 29. Baltensperger M, Grätz K, Bruder E, Lebeda R, Makek M, Eyrich G. Is primary chronic osteomyelitis a uniform disease? Proposal of a classification based on a retrospective analysis of patients treated in the past 30 years. *J Craniomaxillofac Surg.* 2004; 32(1):43-50.
- Aitasalo K, Niinikoski J, Grénman R, Virolainen E. A modified protocol for early treatment of osteomyelitis and osteoradionecrosis of the mandible. *Head Neck.* 1998; 20(5):411-417.
- Maynor ML, Moon RE, Camporesi EM, et al. Chronic osteomyelitis of the tibia: treatment with hyperbaric oxygen and autogenous microsurgical muscle transplantation. *J South Orthop Assoc.* 1998; 7(1):43-57.
- Waisman D, Shupak A, Weisz G, Melamed Y. Hyperbaric oxygen therapy in the pediatric patient: the experience of the Israel Naval Medical Institute. *Pediatrics*. 1998; 102(5):E53.
- 33. Berg E, Barth E, Clarke D, Dooley L. The use of adjunctive hyperbaric oxygen in treatment of orthopedic infections and problem wounds: an overview and case reports. *J Invest Surg.* 1989; 2(4):409-421.
- Davis JC, Heckman JD, DeLee JC, Buckwold FJ. Chronic non-hematogenous osteomyelitis treated with adjuvant hyperbaric oxygen. *J Bone Joint Surg Am.* 1986; 68(8):1210-1217.
- Sheftel TG, Mader JT, Pennick JJ, Cierny G III. Methicillin-resistant *Staphylococcus aureus* osteomyelitis. *Clin Orthop Relat Res.* 1985; 198:231-239.
- Eltorai I, Hart GB, Strauss MB. Osteomyelitis in the spinal cord injured: a review and a preliminary report on the use of hyperbaric oxygen therapy. *Paraplegia*. 1984; 22(1):17-24.
- Morrey BF, Dunn JM, Heimbach RD, Davis J. Hyperbaric oxygen and chronic osteomyelitis. *Clin Orthop Relat Res.* 1979; 144:121-127.
- Depenbusch FL, Thompson RE, Hart GB. Use of hyperbaric oxygen in the treatment of refractory osteomyelitis: a preliminary report. J Trauma. 1972; 12(9):807-812.

- Hamblen DL. Hyperbaric oxygen in treatment of osteomyelitis. *Proc R Soc Med.* 1971; 64(12):1202-1203.
- Sun HJ, Xue L, Wu CB, Zhou Q. Clinical characteristics and treatment of osteopetrosis complicated by osteomyelitis of the mandible. *J Craniofac Surg.* 2016; 27(8):e728e730.
- 41. Liu YP, Lin XH, Yan MY, Lin BQ, Zhuo MY. Debridement in chronic osteomyelitis with benign osteopetrosis: a case report. *Exp Ther Med.* 2016; 12(5):2811-2814.
- 42. Goerger E, Honnorat E, Savini H, et al. Anti-infective therapy without antimicrobials: apparent successful treatment of multidrug resistant osteomyelitis with hyperbaric oxygen therapy. *IDCases*. 2016; 6:60-64.
- Seng P, Cerlier A, Cassagne C, Coulange M, Legré R, Stein A. Saccharomyces cerevisiae osteomyelitis in an immunocompetent baker. *IDCases*. 2016; 5:1-3.
- 44. Singh S, Graham ME, Bullock M, et al. Chronic sclerosing osteomyelitis of the mandible treated with hemimandibulectomy and fibular free flap reconstruction. *Plast Reconstr Surg Glob Open.* 2016; 3(12):e580.
- Lu PC, Wu JH, Chen CM, Du JK. Arsenic trioxide-induced mandibular osteomyelitis. *J Oral Maxillofac Surg.* 2015; 73(9):1761-1765.
- 46. Ueki Y, Watanabe J, Hashimoto S, Takahashi S. Cervical spine osteomyelitis and epidural abscess after chemoradiotherapy for hypopharyngeal carcinoma: a case report. *Case Rep Otolaryngol.* 2014; 2014:141307.
- 47. de Nadai TR, Daniel RF, de Nadai MN, da Rocha JJ, Féres O. Hyperbaric oxygen therapy for primary sternal osteomyelitis: a case report. *J Med Case Rep.* 2013; 7:167.
- Delasotta LA, Hanflik A, Bicking G, Mannella WJ. Hyperbaric oxygen for osteomyelitis in a compromised host. *Open Orthop J*. 2013; 7:114-117.
- 49. García CM, García MA, García RG, Gil FM. Osteomyelitis of the mandible in a patient with osteopetrosis: case report and review of the literature. *J Maxillofac Oral Surg.* 2013; 12(1):94-99.
- Grecchi F, Zollino I, Candotto V, et al. A case of mandible osteonecrosis after a severe periimplant infection. *Dent Res J (Isfahan)*. 2012; 9(suppl 2):S233-S236.
- 51. Leahy TW, Sader C. A rare case of bilateral malignant otitis externa and osteomyelitis with lower cranial nerve sequelae. *BMJ Case Rep.* 2011; 2011.
- 52. Shields RC, Nichols FC, Buchta WG, Claus PL. Hyperbaric oxygen therapy for chronic refractory osteomyelitis of the sternum. *Ann Thorac Surg.* 2010; 89(5):1661-1663.
- 53. Wilkins RM, Hahn DB, Blum R. Bread mold osteomyelitis in the femur. *Orthope-*

dics. 2009; 32(5):362.

- 54. Sun IF, Lee SS, Chiu CC, Lin SD, Lai CS. Hyperbaric oxygen therapy with topical negative pressure: an alternative treatment for the refractory sternal wound infection. J Card Surg. 2008; 23(6):677-680.
- 55. Murray SJ, Lieberman JM. *Fusobacterium* osteomyelitis in a child with sickle cell disease. *Pediatr Infect Dis J.* 2002; 21(10):979-981.
- 56. Roldán JC, Terheyden H, Dunsche A, Kampen WU, Schroeder JO. Acne with chronic recurrent multifocal osteomyelitis involving the mandible as part of the SAPHO syndrome: case report. Br J Oral Maxillofac Surg. 2001; 39(2):141-144.
- 57. Petzold T, Feindt PR, Carl UM, Gams E. Hyperbaric oxygen therapy in deep sternal wound infection after heart transplantation. *Chest.* 1999; 115(5):1455-1458.
- Goodhart GL. Mycobacterium fortuitum osteomyelitis following trauma. J Orthop Trauma. 1993; 7(2):142-145.
- Neimkin RJ, Jupiter JB. Metastatic nontraumatic *Clostridium septicum* osteomyelitis. J Hand Surg Am. 1985; 10(2):281-284.
- 60. Jørgensen NP, Hansen K, Andreasen CM, et al. Hyperbaric oxygen therapy is ineffective as an adjuvant to daptomycin with rifampicin treatment in a murine model of *Staphylococcus aureus* in implant-associated osteomyelitis. *Microorganisms*. 2017; 5(2):E21.
- 61. Oguz E, Ekinci S, Eroglu M, et al. Evaluation and comparison of the effects of hyperbaric oxygen and ozonized oxygen as adjuvant treatments in an experimental osteomyelitis model. *J Surg Res.* 2011; 171(1):e61-e68.
- Shandley S, Matthews KP, Cox J, Romano D, Abplanalp A, Kalns J. Hyperbaric oxygen therapy in a mouse model of implant-associated osteomyelitis. *J Orthop Res.* 2012; 30(2):203-208.
- 63. Mader JT, Guckian JC, Glass DL, Reinarz JA. Therapy with hyperbaric oxygen for experimental osteomyelitis due to *Staphylococcus aureus* in rabbits. *J Infect Dis.* 1978; 138(3):312-318.
- 64. Mendel V, Reichert B, Simanowski HJ, Scholz HC. Therapy with hyperbaric oxygen and cefazolin for experimental osteomyelitis due to *Staphylococcus aureus* in rats. *Undersea Hyperb Med*. 1999; 26(3):169-174.
- 65. Gesell LB, Trott A. De novo cataract development following a standard course of hyperbaric oxygen therapy. *Undersea Hyperb Med.* 2007; 34(6):389-392.
- Kaide CG, Khandelwal S. Hyperbaric oxygen: applications in infectious disease. *Emerg Med Clin North Am.* 2008; 26(2):571-595.
- 67. Mills C, Bryson P. The role of hyperbaric

oxygen therapy in the treatment of sternal wound infection. *Eur J Cardiothorac Surg.* 2006; 30(1):153-159.

- Vanholder R, De Smet R, Jacobs V, et al. Uraemic toxic retention solutes depress polymorphonuclear response to phagocytosis. *Nephrol Dial Transplant*. 1994; 9(9):1271-1278.
- 69. Kolpen M, Mousavi N, Sams T, et al. Reinforcement of the bactericidal effect of ciprofloxacin on *Pseudomonas aeruginosa* biofilm by hyperbaric oxygen treatment. *Int J Antimicrob Agents.* 2016; 47(2):163-167.
- 70. Kolpen M, Lerche CJ, Kragh KN, et al.

Hyperbaric oxygen sensitizes anoxic *Pseudomonas aeruginosa* biofilm to ciprofloxacin. *Antimicrob Agents Chemother.* 2017; 61(11):e01024-e01017.

- Goldman RJ. Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review. *PM R*. 2009; 1(5):471-489.
- 72. Feldmeier JJ, Heimbach RD, Davolt DA, Brakora MJ, Sheffield PJ, Porter AT. Does hyperbaric oxygen have a cancer-causing or -promoting effect? A review of the pertinent literature. *Undersea Hyperb Med.* 1994; 21(4):467-475.
- 73. Chuck AW, Hailey D, Jacobs P, Perry DC.

Cost-effectiveness and budget impact of adjunctive hyperbaric oxygen therapy for diabetic foot ulcers. *Int J Technol Assess Health Care.* 2008; 24(2):178-183.

- 74. Stoekenbroek RM, Santema TB, Koelemay MJ, et al. Is additional hyperbaric oxygen therapy cost-effective for treating ischemic diabetic ulcers? Study protocol for the Dutch DAMOCLES multicenter randomized clinical trial. J Diabetes. 2015; 7(1):125-132.
- McMillan G, Glover M. The clinical and economic potential of hyperbaric oxygen therapy in the treatment of diabetic ulceration and other conditions. *Int J Low Extrem Wounds*. 2007; 6(3):130-138.

Table A: Overview of the causative agents, classification, interventions, follow-up and outcome of the included cohort studies

Author, year, location	Type of study	Participants	Microorganism	Classification system	Intervention	Follow – up	Summary outcome
Akkurt et al 2017, Turkey [20]	Retrospective	Chronic calcaneal osteomyelitis in diabetic patients with severe pedal ulcer (n=23)	Staphylococcus aureus Klebsiella pneumoniae Escherichia Coli Pseudomonas aeruginosa	11 pts with grade II and 12 pts with grade III Wagner classification	Surgical debridement Application of ILIZAROV external fixation No antibiotics administration HBOT	Not reported	Complete clinical cure in 18 pts (78%) with painless and functional foot Partial recovery in 3 pts Failure in 2 pts - amputation
Onen et al 2015, Turkey [21]	Retrospective	Spinal osteomyelitis not improved by antibiotic therapy (n=19) Cervical:1 Thoracic:4 Lumbar:14	Gram negative MRSA Enterococcus spp. Pseudomonas aeruginosa Acinetobacter spp	Not reported	Antibiotics administration (IV Cefazoline) HBOT (in cases that were intractable to3 weeks of antibiotic therapy)	23 months	The combination of antibiotics and HBOT led all cases to a successful outcome. No recurrence and no signs of infection
Skeik et al 2015, USA [22]	Retrospective	Chronic refractory osteomyelitis (n=23)	Not reported	Not reported	Surgical debridement Antibacterial therapy HBOT	Not reported	19 (82.6%) of the patients showed a successful out come 4 (17.4%) failed to demonstrate any

Yu et al 2011, Taiwan [23]	Retrospective	Osteomyelitis of the sternum after sternotomy and cardiothoracic surgery (n=12)	MRSA Staphylococcus aureus Klebsiella pneumoniae Escherichia Coli Acinetobacter baumannii Mycobacterium tuberculosis	Not reported	Surgical debridement Empiric antibiotic administration HBOT (in six patients)	Not reported	The group on adjuvant HBOT (n=6) appeared to have \downarrow length stay in ICU, \downarrow duration of positive non-invasive pressure ventilation, \downarrow duration of invasive mechanical ventilation No hospital death was noticed (compared with 3 deaths in the non- HBOT group)
Saarinen et al 2011, Finland [24]	Retrospective	Chronic mandibular osteomyelitis mimicking recurrent parotitis (n=6)	Streptococcus viridans Streptococcus anginosus Actinomyces Fysobacterium Candida albicans Enterococcus faecalis	Not reported	Surgical debridement Antibiotic administration(based on the antibiogram) HBOT (in two patients)	60 months	No significant clinical difference in clinical outcome compared to no HBOT group
Chen et al 2008, Taiwan [25]	Prospective	Chronic diffuse osteomyelitis of the tibia (n=7) and humerus (n=3) in hemodialysis patients	Staphylococcus aureus Pseudomonas aeruginosa	Not reported	Surgical debridement Parental antibiotic administration HBOT	Not reported	In 8 pts arrest of the disease was observed In 2 pts failure of the treatment was observed that led to amputation
Lentrodt et al 2007, Germany [26]	Retrospective cases study	Chronic recurrent mandibular osteomyelitis in childhood (n=3)	No microbiological investigation was taken due to lack of pus or abscesses	Not reported	No surgical debridement Antibiotic therapy (teicoplanin, clindamycin, penicillin G)	41 months	All patients free of symptoms

HBOT

Chen et al 2004, Taiwan [27]	Prospective	Chronic refractory osteomyelitis of the femur (n=13)	Staphylococcus aureus Escherichia coli (most common) Klebsiella pneumoniae Pseudomonas aeruginosa Enterococcus spp Morganella morganni Enterobacter cloacae Citrobacter freudii	Grade IIIA: 2pts,IVA: 9 pts, IVB: 2pts according to Cierney Mader classification	Surgical debridement Cancellous bone grafting Antibiotic therapy (Vancomycin, Gentamycin, Cefamezide, Piperacillin, Ampicillin) HBOT	22 months	Good wound healing No discharge No recurrence or infection
Chen et al 2004, Taiwan [28]	Prospective	Chronic refractory osteomyelitis of the tibia (n=14) due to close (n=5) and open II, IIIB, IIIC open fractures (n=9)	Staphylococcus aureus (most common) Escherichia coli Pseudomonas aeruginosa Enterococcus spp Serratia mercescens Aeromonas sobria	Grade IIIA: 2 pts, IIIB:3 pts IVA: 3 pts, IVB: 6 pts according to Cierney Mader classification		15 months	No recurrence in 11 (78.6) patients Extra HBOT sessions in 2 patients 1 patient with mixed flora after open IIIB fracture received above knee amputation
Baltenspeng er et al, 2004, Switzerland [29]	Retrospective	Chronic osteomyelitis of the jaw (n=30)	Staphylococcus coagulase (-) Enterococci spp Klebsiella spp Actinomyces spp Neisseria spp Haemophilus spp Fusobacterium Propionibacterium No bacterial growth in 3 cultures	Not reported	Surgical debridement-decortication, partial resection Antibiotic therapy (Clindamycin+Trimethoprim- sulfamethoxazole, amoxicillin, doxycycline) HBOT	48 to 56 months	11(36.7%) patients completely free of symptomsModerate effect in 14 (46.6%) patientsRecurrence in 5 (16.7%) patients

Aitasalo et al, 1998, Finland [30]	Retrospective	Chronic osteomyelitis of the mandible/maxilla (n=33)	Staphylococci spp Streptococcus viridans Streptococcus spp Enterococci spp Actinomyces spp Klebsiella spp Bacteroides spp Peptostreptococcus spp	Not reported	Surgical debridement Decortication with periosteal grafting Antibiotic therapy HBOT	Over than 10 months	Success in 26 (79%) patients No signs for oxygen toxicity
Maynor et al, 1998, USA [31]	Retrospective	Chronic osteomyelitis of the tibia (n=34)	Staphylococcus aureus Staphylococcus coagulase (-) Escherichia coli Pseudomonas spp Serratia marcescens Enterobacter spp Bacteroides spp Clostridia spp Yeast	Grade IIB: 3pts, IIIB: 17 pts, IVB: 14 pts according to Cierney Mader classification	IV Antibiotics based on the antibiogram Tobramycin beads Microsurgical muscle transplantation in 20 pts HBOT	24 to 84 months	21/26 (81%) at 24 months were drain free
Dan Waisman et al, 1998, Israel [32]	Retrospective	Chronic osteomyelitis of femur/toe in children (n=5) suffering from familiar dysautonomia (n=2), septic arthritis of the hip(n=1), open wound (n=1) and paraplegia (n=1)	Not reported	Not reported	Antibiotic therapy (Aminoglycosides) HBOT	Not reported	5/5 (100%) patients recovered without surgical intervention
Berg et al 1989, USA [33]	Retrospective cases study	<u>Case 1</u> : chronic osteomyelitis of the tibia after IIIB open fracture	Not reported	Not reported	Open debridement and curettage Antibiotic administration HBOT	18 months	Drain free

	<u>Case 2</u> : chronic osteomyelitis of the great toe in a patient with Diabetes Mellitus type I			Amputation at the first metatarsal/skin graft Antibiotic administration	12 months	Drain free
Davis et al, Prospective 1986 USA [34]	Chronic non-hematogenous osteomyelitis (n=38) after open fractures(n=2), closed fractures treated with open reduction and internal fixation(n=8) and abscess or infection at the side of a prosthesis (n=10)	Staphylococcus aureus Pseudomonas aeruginosa Proteus mirabilis Escherichia coli Staphylococcus epidermidis Serratia marcescens Enterobacter cloacae	Not reported	HBOT Surgical debridement Parenteral antibiotic administration based on the antibiogram HBOT	34 months	34 pts remained clinically free of infection The treatment of 3 pts with <i>Ps. aeruginosa</i> infection and one patient with <i>E. coli</i> , failed
Seftel et al Retrospective 1985, USA cases study [35]	<u>Case 1</u> : chronic osteomyelitis of the tibia and humerus after open fracture in a patient with chronic malnutrition	MRSA Proteus mirabilis	Stage IIIB according to Cierney Mader classification	Surgical debridement Antibiotic administration (Vancomycin+Tobramycin) HBOT	14 months	Without clinical symptoms
	<u>Case 2:</u> chronic osteomyelitis of the acetabulum and proximal femur after osteotomies due to osteonecrosis	MRSA Escherichia coli Pseudomonas aeruginosa Enterococcus sp.	Stage IVA according to Cierney Mader classification	Surgical debridement Antibiotic administration (Vancomycin+Tobramycin) HBOT	32 months	Without clinical symptoms sedimentation rate <10mm/h
	<u>Case 3</u> : chronic osteomyelitis of the femur after external fixation	MRSA Staphylococcus epidermidis Pseudomonas aeruginosa	Stage IIIA according to Cierney Mader classification	Surgical debridement/bone graft Antibiotic administration (Vancomycin+Tobramycin)	35 months	Without clinical symptoms

				HBOT		rate<5mm/h
	<u>Case 4</u> : chronic osteomyelitis of the femur after open reduction and internal fixation revision surgery for non-union fracture	MRSA	Stage IVA according to Cierney Mader classification	Surgical debridement with hardware removal and intramedullary pinning Antibiotic administration (Vancomycin) HBOT	23 months	union of the fracture site sedimentation rate<5mm/h
	<u>Case 5</u> : chronic osteomyelitis of the ankle after open fracture pinning	MRSA Streptococcus pyogenes Streptococcus morbillorum Pseudomonas aeruginosa Enterococcus spp Bacteroides fragilis	Stage IVA according to Cierney Mader classification	Surgical debridement Antibiotic administration (Vancomycin + Tobramycin + Clindamycin) HBOT	2months	No clinical or laboratory osteomyelitis signs
Eltorai et al Retrospective 1984, USA [36]	Chronic osteomyelitis of the hip (n=28) Pelvis (n=6), lumbar spine (n=3), sacrum (n=5), knee joint(n=2), tibia (n=2), elbow(n=14) in patients with paraplegia (n=30) and tetraplegia (n=14) after spinal cord injury	Staphylococcus aureus Streptococcus spp Escherichia coli Pseudomonas aeruginosa Enterococcus spp Klebsiella spp Serratia spp	Not reported	Surgical debridement, osteotomies, muscle grafts Antibiotic administration based on antibiogram HBOT	6 to 108 months	No side effects of the treatment 30 pts considered cure Recurrence in 5 patients Amputation in 5 patients
Morrey et al Prospective 1979, USA [37]	Chronic refractory osteomyelitis of the femur, tibia , spine, and foot (n=53, 40 patients treated with adjuvant HBOT)	Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Serratia spp Proteus spp	Not reported	Surgical debridement, sequestrectomy, autologous bone graft, soft tissue procedures	23 months	33 patients: clinical free 7 patients recurrence of osteomyelitis

sedimentation

Antibiotic administration based on antibiogram

HBOT

Depenbusch et al, 1972, USA [38]	Prospective	Chronic refractory osteomyelitis of the extremities (n=25), Spine-pelvis(n=4), Chest wall (n=5), Frontal sinus(n=2) Mandible (n=13) (Total n=59)	Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Proteus Klebsiella Enterobacter spp	Not reported	Surgical debridement, sequestrectomies, Antibiotic administration based on antibiogram HBOT	Excellent results- healing in 35 patients In 24 patients decreased drainage and pain reduction No side effects
Hamblen, 1971, UK [39]	Retrospective cases study	<u>Case 1</u> : chronic osteomyelitis of the tibia after open comminuted fracture and extensive soft-tissue damage after a military missile trauma	Staphylococcus pyogenes Pseudomonas pyocyanea	Not reported	Surgical debridement, sequestrectomies, skin graft, bone graft Antibiotic administration (Penicillin, lincomycin, fucidic acid) HBOT	The HBOT treatment was discontinued after 6 days due to convulsions Complete healing
		<u>Case 2:</u> patient with lasting 47 years chronic osteomyelitis of the femur	Streptococcus faecalis Proteus spp	Not reported	Surgical debridement Antibiotic administration (Ampicillin) HBOT	The osteomyelitis sinus was not healed Rapidly decrease of the drainage and the sedimentation rate

Amputation was not avoid

Case 3: chronic osteomyelitis	Not reported	Not reported	Surgical debridement,	
of the fibula following			sequestrectomies,	The sinus of the
surgical treatment of an ankle				osteomyelitis was
fracture-dislocation			Antibiotic administration	healed within 10 days
			(cloxacillin)	
				Healthy surrounding
				tissues,
			HBOT	
				No clinical or
				laboratory findings of
				the infection

Author, year, location	Type of study	Participants	Microorganism	Intervention	Follow – up	Summary outcome
Sun et al 2016, China [40]	Case study	Patient with osteopetrosis complicated with chronic mandibular osteomyelitis (n=1)	Negative culture	Surgical debridement Antibiotics administration (Cefuroxim + ornidazole) HBOT	6 months	Complete healing without recurrence
Liu et al 2016, China [41]	Case study	Patient with osteopetrosis complicated with chronic maxillary osteomyelitis (n=1)	Not reported	Surgical lavage Low-doses antibiotics administration (cefazolin 1 gr every 8hs) HBOT	2 months	Complete healing without recurrence
Goerger et al 2016, France [42]	Case study	Patient with Diabetes Mellitus type II, complicated with skin infection and osteomyelitis of the midfoot (n=1)	Klebsiella pneumoniae	Surgical debridement Daily wound cleaning HBOT No antibiotics administration	1 month	Negative bacteriological cultures of the wounds
Seng et al 2016, France [43]	Case study	Chronic osteomyelitis after a distal humeral fracture (n=1)	Saccharomyces cerevisiae	Antifungal therapy (:voriconazole) Antibacterial therapy (Imipenem-cilastin and oral ciprofloxacin)	1.5 months (6 weeks)	The external fixation of the primary treatment was removed after 6 weeks No signs of infection

Table B: Overview of the causative agents, classification, interventions, follow-up and outcome of the included case studies.

HBOT

Singh et al 2015, Canada [44]	Case study	Chronic sclerosing osteomyelitis of the mandible (n=1)	Staphylococcus aureus Staphylococcus ludgenencis Streptococcus viridans	Antibiotics administration (Ceftriaxone IV and oral Metronidazole)		No improvement from the conservative therapy
[44]				НВОТ		Hemimandibulectomy and fibular free flap reconstruction
Lu et al 2015, Taiwan	Case study	Osteomyelitis of posterior mandibular due to arsenic	Not reported	Surgical debridement and trimming	48 months	No signs of inflammation and
[45]		exposure (n=1)		Antibacterial therapy (Ampicillin)	montuis	normal bone structure
				НВОТ		
Ueki et al 2014, Japan	Case study	Osteomyelitis in Cervical spine and epidural abscess on	No microorganism identified in the pharyngeal cultures	No surgical treatment applied		No recurrence was noted
[46]		C4-C7 after chemotherapy for hypo pharyngeal carcinoma (n=1)	in the pharyngen cultures	Antibiotics administration (Meropenem)		liocu
		(11 1)		НВОТ		
De Nadai et al	Case study	Chronic osteomyelitis of the sternum	Staphylococcus aureus	Surgical debridement	1 month	Chest CT and bone sintigram showed bone
2013, Brazil [47]		(n=1)		Antibiotics administration (Metronidazole and Cefotaxime)		remodeling and absence of osteomyelitis
				НВОТ		osteomyenus
Delasotta et al	Case study	Chronic post-traumatic osteomyelitis due to	MRSA	Surgical debridement	10 months	Rapid improvement after adjunctive HBOT
2013, USA		subtrochanderic fracture (n=1)		Antibiotics administration (vancomycin)		Without any symptoms

[48]				НВОТ		during the follow-up period
García CM et al 2013,Spain	Case study	Chronic osteomyelitis of the mandible in a patient with osteopetrosis	Not reported	Surgical debridement, sequestrum, drainage of the abscess	12 months	Unresolved COM
[49]		(n=1)		Long term antibiotic administration (clindamicyn)		
				НВОТ		
Grecchi et al 2012, Italy [50]	Case study	Chronic osteomyelitis of the mandible complicated with osteonecrosis due to	Actinomyces spp	Surgical debridement- sequestrectomy		Complete healing
[50]		periimplant infection		Antibiotic administration p.os		
				НВОТ		
Leahy and Sader, 2011, Australia [51]	Case study	Chronic osteomyelitis of the skull base with the involvement of the petrous temporal bone	Pseudomonas aeruginosa	Antibiotic administration (meropenem+ teicoplanin) plus fluconazole p.os	2 months	Complete resolution of the infection
[01]		(n=1)		НВОТ		
Shields et al 2010, USA	Case study	Chronic refractory osteomyelitis of the sternum	Escherichia Coli	Multiple surgical debridements	16 months	The HBOT was applied due to surgical
[52]		after median sternotomy (n=1)		Long term antibiotic administration	montaio	debridement and antibiotic therapies
		(** *)		НВОТ		failure

The HBOT resulted in pain relief, healing of the infection and improvement of the

laboratory indexes

No recurrence during the follow-up period

Wilkins et al 2009, USA [53]	Case study	Chronic post-operative osteomyelitis of the distal femur after anterior cruciate ligament repair (n=1)	Rhizopus species	Surgical debridement Antifungal therapy (IV Amphotericin B) HBOT	36 months	No evidence of recurrent infection Application of distal femoral endoprosthesis Musculoskeletal
Sun et al, 2008, Taiwan [54]	Case study	Chronic osteomyelitis of the sternum after coronary artery grafting by-pass	No bacterial growth in cultures	Surgical debridement Antibiotic administration (Vancomycin) Topical antimicrobial dressing	10 months	functional score: 50% Clinical asymptomatic patient C-reactive protein: normalized
Murray and	Case study	Chronic anaerobic	Fusobacterium nucleatum	HBOT Surgical debridement		The infection was cured
Lieberman 2002, USA [55]		osteomyelitis of proximal tibia in a child with sickle cell disease (n=1)		Antibiotic therapy (Clindamycin IV)		and the patient resumed full activities
Roldan et al, 2001, Germany [56]	Case study	Chronic recurrent multifocal osteomyelitis of the mandible in a patient (n=1) with SAPHO syndrome (Synovitis, Acne, Pustulosis palmoplantaris, Hyperostosis and Osteitis	Propionibacterium acnes Staphylococcus epidermidis	HBOT Decortications of the mandible with application of PMMA beads Immunostimulatory treatment with allogenic blood	18 months	Free of pain The clinical and scintigraphic findings indicate healing.

Antibiotic administration (tetracycline and amoxicillinclavunate)

HBOT

Petzold et al, 1999, Germany [57]	Case study	Chronic osteomyelitis of the sternum after orthotopic heart transplantation (n=1)	Staphylococcus aureus	Local debridement Partial sternal wire removal Open antiseptic irrigation HBOT	Over than 60 months	The patient was asymptomatic
Goodhart 1993, USA [58]	Case study	Chronic osteomyelitis of the proximal humerus after IIIC open fracture (n=1)	Mycobacterium fortuitum	Drainage of the soft tissue abscess Limited debridement of the proximal humerus shaft Oral Antibiotic administration (ciprofloxacin) HBOT	24 months	No side effects No recurrence of osteomyelitis
Neimkin and Jupiter, 1985, USA [59]	Case study	Chronic metastatic osteomyelitis of the left distal radius and septic necrosis of the left lunate	Clostridium septicum	Surgical debridement and application of external fixation for joint fusion IV- antibiotic administration (Penicillin and cephalothin) HBOT	19 months	No recurrence of the osteomyelitis Painless pseudarthrosis of the wrist

Author, year, location	Type of study	Animal model/species	Microorganism	Intervention	Summary outcome
Jorgensen et al 2017, Denmark [60]	Experimental animal study	Implant – associated osteomyelitis of the tibia in C57BL6/j mice (n=80)	Staphylococcus aureus	Subcutaneous antibiotics administration (Daptomycin and rifampicin) for 14 days	HBOT treatment lead to an initial 3- 4% body mass reduction of the animals
		· · /		НВОТ	HBOT treatment increased the animals' bone turnover
					HBOT reduced the number of animals with abscesses signs
					HBOT treatment did not improve the outcome of antibiotic treatment measured through the bacterial load on implants and bones
Oguz et al 2011, Turkey [61]	Experimental animal study	Osteomyelitis of the femur in Sprague-	Methicillin resistant Staphylococcus aureus (MRSA)	Intraperitoneal administration of Vancomycin	HBOT treatment was effective in decreasing the oxidative stress
		Dawley rats (n=48)		O ₃	indices and the inflammatory cytokine levels of osteomyelitis
				НВОТ	The histopathological score of osteomyelitis in the HBOT plus Vancomycin group was lower than the control group
					The bacterial counts in the Vancomycin plus HBOT and Vancomycin plus HBOT and O3

groups were significantly lower

Table C: Overview of the causative agents, interventions and outcomes of the included animal studies

than the control group

Shandley et al 2011, USA [62]	Experimental animal study	Implant – associated osteomyelitis of the tibia in C57BL6/j mice	Methicillin resistant Staphylococcus aureus (MRSA) Klebsiella pneumoniae Pseudomonas aeruginosa	Prophylactic HBOT treatment Post infection HBOT treatment No antibiotics administration	HBOT does not appeared to be an efficient treatment of an implant-associated osteomyelitis
Mendel et al, 1999, Germany [63]	Experimental animal study	Osteomyelitis of the tibia in Wistar rats (n=104)	Staphylococcus aureus	Antibiotics administration (Cefazolin) HBOT	HBOT treatment alone reduce the colony-forming units of S. aureus Cefazolin alone reduce the colony- forming units of S. aureus The effectiveness of the treatment was more pronounced with the combination of HBOT and
Mader et al 1978, USA [64]	Experimental animal study	Osteomyelitis of the tibia in New Zealand white rabbits (n=66)	Staphylococcus aureus	Antibiotics administration (Cephalothin) HBOT	Cefazolin The animal mortality rates, the gross severity of osteomyelitis and the killing curves of <i>S. aureus</i> were similar in all treatment groups HBOT is as effective as the antibiotic therapy

Study	Patient	Quality of	Follow-up	Data report	Other issues	Total
	selection	methodology	2			4 -
Akkurt et al	+/-	+/-	?	+/-	+/-	4.5
2017, [20]						2.0
Onen et al	+/-	+/-	+	+	+/-	3.0
2015, [21]	. /		2			
Skeik et al	+/-	-	?	-	-	7.5
2015, [22]	. /	. /	?	. /	. /	4 5
Yu et al	+/-	+/-	2	+/-	+/-	4.5
2011, [23] Saarinen et	. /	. /		. /	. /	4.0
	+/-	+/-	+	+/-	+/-	4.0
al 2011, [24]	. /	. /	?	. /	. /	4.0
Chen et al	+/-	+/-	2	+/-	+/-	4.0
2008, [25] Loptrodt et	ـ ــ/	±/	+	±/	±/	4.0
Lentrodt et	+/-	+/-	+	+/-	+/-	4.0
al 2007, [26]	,		- <i>1</i>			1.0
Chen et al	+	+	+/-	+	+	1.0
2004, [27]	,		- <i>1</i>			1.0
Chen et al	+	+	+/-	+	+	1.0
2004, [28] Baltananana	. /	. /		. /	. /	4.0
Baltenspeng	+/-	+/-	+	+/-	+/-	4.0
er et al,						
2004, [29]	. /	. /	. /	. /	. /	5.0
Aitasalo et	+/-	+/-	+/-	+/-	+/-	5.0
al, 1998, [30]	. /				. /	2.0
Maynor et al,	+/-	+	+	+	+/-	2.0
1998,[31] Dar	. /		C			7 5
Dan	+/-	-	?	-	-	7.5
Waisman et						
al, 1998, [32]						
D / 1						<u> </u>
Berg et al	-	-	+/-	-	-	9.0
1989, [33]						1.0
Davis et al,	+	+/-	+	+	+	1.0
1986[34]	. /		. /		. /	C 0
Seftel et al	+/-	+	+/-	+	+/-	3.0
1985, [35]						
Eltorai et al	+/-	+/-	+/-	+	+/-	4.0
1984, [36]						
Morrey et al	+	+/-	+/-	+/-	+/-	4.0
1979, [37]			-			e -
Depenbusch	+	+/-	?	+/-	+/-	3.5
et al, 1972,						
[38]			-			
Hamblen,	+/-	+/-	?	+/-	+/-	4.5
1971, [39]						

Table D: Overview of the risk of bias of the included studies

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.