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The FGF family
Introduction

The fibroblast growth factors (FGF) constitute a family of seven mitogenic
and structurally homologous polypeptides found in a variety of cells and
tissues [for reviews see 1-9]. The FGF family includes acidic FGF (aFGF),
basic FGF (bFGF), int-2, hst/K-fgf, FGF-5, FGF-6, and keratinocyte growth
factor (KFGF) (Table 1). A simplified nomenclature has been proposed
in which the FGF family members are named FGF-1, FGF-2, FGF-3,
FGF-4, FGF-5, FGF-6, and FGF-7, respectively. Structurally, the homo-
logies between the seven FGF family members is 35-45%, with the homo-
logies being greatest in the internal regions of these proteins. Their molecular
weights range from 18 to 30kDa. They all share with aFGF and bFGF the 3
exon-2 intron structure and the conservation of two cysteine residues. An
important structural difference between the FGF family members is that,
unlike the others, aFGF and bFGF lack signal peptide sequences and are
not secreted proteins. Members of the FGF family, in particular bFGF [10],
are also characterized by their strong affinity for heparin. The affinity of
bFGF for heparin is manifested in its ability to bind to cell surface heparan
sulfate proteoglycan (HSPG), an activity that is required for binding to high-
affinity FGF receptors [9]. A schematic representation of the FGF family
members portraying domains of sequence homology and signal peptides is
shown in Fig. 1.

The biological significance of cell-associated aFGF and bFGF is still a
matter of conjecture, while the other five FGFs are thought to be involved
in typical paracrine and autocrine growth mechanisms. An important bio-
logical distinction is that aFGF, bFGF, and KGF do not transform the cells
that produce them, while int-2, hst/K-fgf, FGF-5, and FGF-6 are oncogenes.
Unlike aFGF and bFGF, which are found ubiquitously in adult tissue, these
oncogenes are expressed primarily during embryogenesis, neonatal devel-
opment, and in many tumors. KGF is associated mostly with the epithelium.

In this chapter, we will review the structural and biological properties of
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Table 1. Members of the FGF family

Common name Mw Originally found in
FGF-1 acidic FGF (HBGF-1) 18,000 Adult tissue (neural)
FGF-2 basic FGF (HBGF-2) 18,000 Most adult tissue
FGF-3 int-2 27,000 Site of MMTYV integration,
breast carcinoma
FGF-4 hst/K-fgf 23,000 Human stomach tumor (hst),
Kaposi’s sarcoma (KFGF)
FGF-5 FGF5 29,000 Bladder carcinoma, hepatoma
FGF-6 FGF 6 ? Homologous to Ast
FGF-7 Keratinocyte 28,000 Epithelial tissue stromal cells
Growth factor (KGF)
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Figure 1. Schematic representation depicting FGF family structural features. The numbers in
parentheses represent the numbers of amino acids in the open reading frames. Also depicted
are the presence or absence of signal peptide sequences, the N-terminal amino acids blocked by

acetylation, the regions of structural homology, and the presence throughout the family of two
homologous cys residues.

the individual FGF family members, with an emphasis on their perceived
role in tumorigenesis.

aFGF and bFGF (FGF-1 and FGF-2)

Acidic FGF and basic FGF will be discussed together, since only subtle
physiological differences have been found between these two well-charac-
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terized proteins. Acidic FGF and bFGF have a 53% protein sequence
homology [11]. Both are single-chain polypeptides of 154 amino acids with
molecular weights of about 18 kDa, as predicted from their cDNA nucleotide
sequence. The gene for aFGF is located on chromosome 5 [12], while that of
bFGF is located on chromosome 4 [13]. They also have other important
structural differences [6,13-15]. Acidic FGF is an anionic protein with a pl
of 5.6 [15], while bFGF is very cationic with a pI of about 10 [16]. In
addition, there are forms of bFGF containing more than 154 amino acids
that have molecular weights of 22-25kDa [17-19]. These higher molecular
weight forms of bFGF are generated by an unusual mechanism in which
synthesis is initiated on the CUG start codons, rather than the typical AUG
codon that initiates the 18kDa form [18,19].

An important property of aFGF and bFGF is their interaction with
heparin [20,21]. Both bind tightly to columns of immobilized heparin, a
property that has facilitated their purification [1,10,15,20]. In addition,
heparin stabilizes aFGF and bFGF, and protects them from heat, acid [21],
and proteolytic degradation [22]. Acidic FGF and bFGF also bind to
heparin-like molecules that are associated with cells. These include heparan
sulfate proteoglycans (HSPG) in extracellular matrix and on cell surfaces. It
has been suggested that aFGF and bFGF are sequestered or “stored” in the
extracellular matrix [23-25] as part of a highly stable FGF-HSPG complex
and are released during injury by a combination of proteases and heparinases
[23]. The binding of bFGF to cell surface HSPG is a prerequisite for FGF’s
ability to bind to the FGF high-affinity receptor [9,26] as well as for bFGF
mitogenic activity. Thus, heparin binding is an important property that
modulates FGF structure, stability, and function. Interestingly, bFGF also
maintains a high affinity for betacyclodextrin-tetradecasulfate, which struc-
turally resembles heparin [27].

The biological activities of aFGF and bFGF are very similar. Both are
important components of endothelial cell growth and differentiation, and
stimulate new blood vessel growth, i.e., they are angiogenic in vivo [1].
Their angiogenic activity stems from the ability to stimulate many com-
ponents in the formation of new blood vessels, such as (1) endothelial cell
migration [28], (2) endothelial cell proliferation [29], (3) protease produc-
tion [30], (4) matrix degradation [31], (5) plasminogen activator activity
[32], and (6) capillary tube formation [33].

Acidic FGF and bFGF also stimulate the proliferation of a variety of
other cell types in vitro, including fibroblasts [34], vascular smooth muscle
cells [35], granulosa cells [36], osteoblasts [37], ovarian epithelial cells [38],
oligodendrocytes [39], and keratinocytes [40].

There has been considerable effort to analyze the activities of aFGF and
bFGF in vivo. One fruitful area has been the role of these growth factors in
modulating wound healing. Since endothelial cells and fibroblasts are critical
components of wound healing, mitogens of these cell types, such as aFGF
and bFGF, might be expected to accelerate wound repair. In one of the first
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studies to elucidate the role of fibroblast growth factor in wound healing,
it was demonstrated that bFGF administered to a wound stimulates the
formation of a highly vascular granulation tissue [41]. Subsequently, it was
found that topical application of bFGF increased tensile strength in sutured
linear incisions in rats [42] and accelerated the rate of closure of partial-
thickness wounds in pigs [43]. If bFGF is blocked in vivo by local application
of antibodies, the wound will not heal, suggesting that bFGF has a natural
critical role in wound healing [44].

Folkman and colleagues hypothesized that duodenal ulcers are similar to
surgical wounds that require bFGF to heal. Therefore they administered an
acid-resistant oral form of bFGF to rats and found that angiogenesis was
stimulated in the ulcer bed and the ulcers healed significantly more rapidly
[45].

Acidic FGF is also active in vivo. When applied in Gelfoam implants in
the peritoneal cavities of rats [46], aFGF stimulates angiogenesis.

One potential important therapeutic use for aFGF, bFGF, and KFGF
in patients may be to reverse impaired wound healing. In rodents, the
application of topical bFGF has been demonstrated to reverse wound
healing impairments produced by systemic steroids and genetic obesity [47],
genetically induced diabetes [48], and local bacterial contamination [49].
These results may be applicable to humans as well.

Fibroblast growth factor may also be useful in stimulating a variety of
regenerative processes in the central nervous system. For example, bFGF
increases neuronal preservation [50] and nerve regeneration [51].

int-2 (FGF-3)

int-2 was the first FGF-like oncogene to be described [52-55]. It was so
named because of the initial discovery that it was induced to become trans-
criptionally active after integration (inf) of the mouse mammary tumor virus
into the mouse genome [53]. The int-2 gene is expressed in very specific time
periods and locations from midgestation until birth in amphibia [56-58].
The int-2 gene induces mesoderm in Xenopus laevis animal pole cells and
stimulates DNA synthesis in mammalian fibroblasts [59]. Based on these
studies and others, it has been designated a developmental control gene
[56].

Once the structure of int-2 was determined its homology to bFGF became
apparent. The int-2 gene encodes for a protein of 231 amino acids that has a
46% homology to bFGF [60]. As expected for a secreted protein with
a signal peptide, the int-2 protein can be detected in the endoplasmic
reticulum of transfected cells [61]. However, the int-2 protein has not, to
date, been shown to be an active mitogen and its mechanism in transforming
cells is unclear.

As an oncogene induced by mammary tumor virus, int-2 would be
expected to be expressed by breast tumors. Expression of int-2 in transgenic
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mice results in epithelial cell hyperplasia in mammary and salivary glands,
as well as prostatic epidermal hypertrophy, which results in male sterility
[62]. Amplification of the int-2 gene has been found in a variety of human
tumors, particularly in breast carcinomas [63-66] and squamous cell carci-
nomas of the head and neck region [66—69]. The clinical implications of
these findings appear to be relatively insignificant, since they occur in less
than a majority of patients with these tumors and have not been shown to
have a significant correlation with outcome in patients in whom in#-2 is
expressed. In breast carcinoma, for example, the percentage of patients who
show int-2 amplification is usually less than 30% [63-66].

Int-2 is expressed during embryogenesis and tumorigenesis; however,
further work is needed to understand its function in oncogenically trans-
forming cells. Since it is rarely found in adult preneoplastic cells, one
possible function for int-2 is as a clinical prognosticator. Furthermore, its
diagnostic significance may be amplified when it is found in the presence
of other oncogenes [70-72]. The coamplification of oncogenes may be
important for many oncogenes that have not yet had significant clinical
impact when expressed in and of themselves. One exception is the expression
of N-myc in neuroblastomas, which has clinical significance when it is
singularly expressed [73].

hst/K-fgf (FGF-4)

The hst/K-fgf oncogene was isolated from two sources simultaneously. One
source was NIH-3T3 cells transfected with the Kaposi sarcoma DNA, hence
the name Kaposi FGF (K-fgf) [74,75]. The other source was NIH-3T3 cells
transfected with DNA from a human stomach tumor, hence the name hst
[76-78]. hst/K-fgf is located on chromosome 11 band ql13 [77], approxi-
mately 40—50kb from the int-2 gene. The hst/k-fgf has 43%, 38%, and 40%
sequence homologies to aFGF, bFGF, and int-2, respectively.

hst/K-fgf has similar biological activities to aFGF and bFGF, but it has
different structural features. In particular, the hst/K-fgf gene encodes for a
206 amino acid primary translation product that contains a hydrophobic
signal peptide sequence. In distinction to aFGF and bFGF, the mature 23-
kDa 176 amino acid protein of hst/k-fgf is glycosylated and secreted [75].
The gene for hst/K-fgf is rarely expressed in adult cells or in adult tissues
[79]. It is expressed, however, in embryogenesis, specifically during mid-
stage mouse embryogenesis. hst/k-fgf also stimulates DNA synthesis in
mammalian fibroblasts [59]. As expected for an oncogene, hst/K-fgf syn-
thesis has been demonstrated in a variety of solid tumors, including germ
cell [80], esophageal [81], gastric [82], and breast tumors [83]. On the other
hand, it is not expressed in hematopoietic tumors, such as leukemias [83].
Interestingly, although hst/K-fgf was first isolated from cells transfected with
Kaposi sarcoma DNA, it has not been detected in the secreted material
from cultured Kaposi sarcoma cells [84,85].
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It has been suggested that hst/K-fgf induces the transformed phenotype
by binding to cell surface receptors, thereby creating an autocrine closed
loop [75]. No specific receptor has been identified for the hst/K-fgf protein,
but it is thought to bind to the same receptor as aFGF and bFGF [85].

FGF-5

FGF-5 was originally isolated by transfection of a human bladder tumor
DNA into NIH-3T3 cells [86]. Its gene sequence has 40-50% homology to
aFGF and bFGF [87]. The FGF-5 gene is found on human chromosome
number 4 [88] and encodes for a 267 amino acid protein with a signal
sequence. There is some evidence that FGF-5 synthesis is dramatically
increased if there is a deletion or a point mutation in an upstream open
reading frame [89].

The FGF-5 protein is secreted as glycoprotein molecules of hetero-
geneous sizes [89]. It is a potent mitogen for endothelial cells and fibroblasts
[87]. Messenger RNA transcripts for FGF-5 are found in nearly all phases of
embryogenesis [90] and in the neurons of adult brains [91]. The protein for
FGF-5 is also secreted from bladder carcinoma, endometrial carcinoma, and
human hepatoma cell lines [87].

FGF-6

FGF-6 is an oncogene originally isolated from a mouse plasmid library by
screening with the hst/K-fgf gene [92]. The FGF-6 gene is found on chromo-
some 12 band pl3, unlike int-2 and hst/K-fgf, which are localized on
chromosome 11 band q13 [93]. Transfection of NIH-3T3 cells with the
FGF-6 gene transforms them. The amino acid sequence for FGF-6 is 70%
identical to the aFGF product at the C terminus. FGF-6 is the least char-
acterized of the FGF family members and there are very little data to date
on expression of the FGF-6 protein.

KGF

The keratinocyte growth factor (KGF) has a 39% homology to bFGF [94].
The KGF gene encodes for a primary translation product of 194 amino
acids, and the mature protein does have a signal peptide and is secreted.
KGF is present in stromal cells (i.e., fibroblasts) derived from epithelial
tissues and is present in embryonic and adult tissue [94]. It has not to date
been identified in tumor cells. Unlike other FGF family members, it is
neither an endothelial cell growth/angiogenesis factor nor is it an oncogene.
Instead, it is a highly specific mitogen for epithelial cells, in general, and for
keratinocytes in particular [94]. Thus it differs from aFGF and bFGF, which
do not show such target cell specificity.

216



Table 2. Presence of fibroblast growth factors in human tumors

Tumor aFGF bFGF int-2  hst/K-fgf FGF-5 References
Adrenal carcinoma + 175
Basal cell carcinoma + 177
Bladder carcinoma + + 86,147
Brain tumors
Gioblastoma + + 170-173
Meningioma + 171
Acoustic neuroma + 150
Pituitary tumors + 151
Astrocytoma + 174
Breast carcinoma + + + 63-66,83,
152-155
169
Cervical carcinoma + 160
Chollangiocellularcarcinoma + 156
Colon carcinoma + 78,179
Embryonal carcinoma + + 157,163
Endometrial carcinoma + 87
Esophageal squamous cell + + 67-69,81
carcinoma 72,158,159
Gastric adenocarcinoma + 72,77,78,82
Hepatoma + 87,160-162
Kaposi sarcoma + 164,181
Laryngeal squamous celt
carcinoma + 67
Melanoma + + + 70,160,177
Neuroblastoma + + 165,177
Oral cavity & tongue + 67
Osteosarcoma + 177
Ovarian carcinoma + 166
Pancreatic adenocarcinoma + 167
Renal cell carcinoma + 147,149,168
Rhabdomyosarcoma + + 178,180
Teratocarcinoma + + + 80,176
Tonsil squamous cell carcinoma + 67

The FGF family and tumor growth

Members of the FGF family are expressed in animal and human tumors (for
human tumors see, Table 2). The four FGF oncogenes, int-2, hst/K-fgf,
FGF-5, and FGF-6 are involved in autocrine transformation of cells. The
role of aFGF and bFGF is less clear, since they are found in both normal
and tumor cells. Furthermore, tumorigenicity has not been directly cor-
related with aFGF or bFGF expression. Normal endothelial cells synthesize
more bFGF than is expressed in many tumor cell lines [24,95]. The normal
phenotype of these endothelial cells is maintained, even though these cells
have FGF receptors and could in theory participate in autocrine trans-
formation. Secondly, aFGF and bFGF are not secreted. Thus, even if
expressed by tumor cells they may not be able to iduce autocrine trans-
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formation, which typically requires interaction of a secreted growth factor
with its receptor on the same cell type. Lack of active secretion also limits
possible paracrine activity, unless aFGF or bFGF are released by alternative
mechanisms, such as cell death.

There are conditions, however, in which aFGF or bFGF might induce
autocrine cell transformation; for example, acquisition by FGF of a signal
peptide. Cells transfected with native bFGF cDNA and overexpressing bFGF
acquire an enhanced proliferation rate and a higher saturation density,
evidence of a transformed phenotype. However, they remain density arrested
and are nontumorigenic in syngeneic mice [96], suggesting that transfor-
mation in vitro is not necessarily correlated with tumorigenicity in vivo.
Cells transfected with native aFGF cDNA are similarly nontumorigenic [97].
One possible explanation is that cells overexpressing the FGFs might release
small but sufficient amounts of growth factor for stimulating autocrine
growth in vitro but that in vivo this material diffuses away. Alternatively,
aFGF and/or bFGF transform cells in culture by some type of internal
autocrine mechanism in which FGFs are not released but interact with
intracellular FGF receptors. This might occur in vitro to stimulate trans-
formation but for some unknown reason may be insufficient to induce
tumorigenicity in vivo.

Cells transfected with a construct in which bFGF ¢cDNA is altered by
addition of a signal sequence undergo autocrine transformation and exhibit
morphological and biochemical alterations characteristic of highly trans-
formed cells [96,98]. The signal peptide bFGF (spbFGF)-transformed cells
have an accelerated proliferation rate, are not density arrested, and are
capable of anchorage-independent growth. spbFGF cells possess few func-
tional FGF receptors at the cell surface, supporting the idea that these cells
are transformed by constitutive interaction with and downregulation of the
FGF receptor. Most importantly, the spbFGF-transformed cells are highly
tumorigenic and metastatic. It has been suggested that spbFGF transforms
cells via an internal autocrine loop, since these cells do not secrete bio-
logically active bFGF, despite the presence of a signal peptide, and their
proliferation rate is not affected by neutralizing antibodies to bFGF.

The molecular mechanism by which a signal peptide-bearing bFGF leads
to transformation is yet to be determined. It is possible that a structural,
posttranslational modification of FGF, being processed through the endo-
plasmic reticulum and golgi apparatus, may lead to an atypical interaction
with the FGF receptor. The localization of bFGF-receptor interaction might
play an important role in autocrine transformation. While native bFGF can
interact with the FGF receptor only at the cell surface, sppFGF might be
able to bind the receptor inside the cell anywhere along the secretory
pathway. Such an intracellular interaction may activate different modes
of signal transduction by exposing novel substrates to the tyrosine kinase
activity of the FGF receptor.

In summary, the four FGF oncogenes and their respective proteins are
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the most likely to stimulate tumor growth. The reason for their oncogenic
potential could be that, unlike aFGF and bFGF, these four oncogenes have
naturally occurring signal sequences and encode for secreted proteins that
appear to be involved in the autocrine transformation of cells possessing
FGF receptors. In this regard, the distribution of int-2, hst/K-fgf, and FGF-5
is quite different than that of aFGF or bFGF. The oncogenes are rarely
found in normal adult tissue. Rather, they appear to be mostly expressed
during embryogenesis and in tumors. It is possible that FGF-related onco-
genes are the forms of FGF preferentially expressed during periods of
intense proliferation.

The FGF family and tumor vascularization

Proliferation of blood vessels is necessary for the normal growth and devel-
opment of tissue. In the adult, angiogenesis occurs infrequently. Exceptions
are found in the female reproductive system, where angiogenesis occurs in
the follicle during its development, in the corpus luteum during ovulation,
and in the placenta during pregnancy. These periods of angiogenesis are
relatively brief and tightly regulated. Normal angiogenesis also occurs as
part of the body’s repair processes; for example, in the healing of wounds
and fractures. By contrast, uncontrolled angiogenesis is usually pathological.
For example, the ability of tumors to stimulate angiogenesis or new capillary
blood vessel growth allows them to grow in an exponential manner [1,5,99—
109]. The corollary of this principle is that without the ability of tumors to
stimulate new blood vessels, the tumors will remain in a small, avascular
state. Vascularization of a tumor also enhances metastatic potential. It has
been recently demonstrated that in breast cancer patients their is a strong
correlation between the number and density of microvessels in the primary
tumor and the incidence of breast cancer metastases [110].

A number of growth factors have been shown to be angiogenic, including
aFGF, bFGF, angiogenein, platelet-derived endothelial cell growth factor,
vascular endothelial growth factor, tumor necrosis factor, and transformig
growth factors-a and - [1,4,7,111-114]. Acidic FGF and bFGF are the best
characterized of all the angiogenesis factors. These FGFs stimulate angio-
genesis in the classical bioassays, such as the normally avascular cornea and
the chick chorioallantoic membrane [115, 116]. Acidic FGF and bFGF
modulate endothelial cell activity in vitro in a manner consistent with being
stimulators of angiogenesis in vivo. For example, in culture FGF stimulates
endothelial cell chemotaxis [28] and proliferation [29] for endothelial cells.
Endothelial cells themselves secrete substantial amounts of bFGF [29,95],
most of which is associated with the subendothelial cell extracellular matrix
[23-25,117-120]. FGF found in the endothelial cell extracellular matrix
is an essential component required for blood vessel growth. It has been
suggested that capillary growth is regulated locally by bFGF stored in
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capillary basement membrane that is released to stimulate capillary endo-
thelial cells in an autocrine manner [25,117]. Basic FGF has been shown to
support tumor growth by stimulating blood vessel growth [121-123]. For
example, colon carcinoma can be stimulated by the application of bFGF in
vivo [121]. Since FGF receptors do not appear on the colon cancer cells
themselves but are found on the endothelial cells in the tumor, it appears
that colon carcinoma growth is mediated by bFGF-induced neovascular-
ization. Neutralizing FGF antibodies significantly reduce the tumor volume,
further suggesting an endothelial cell-stimulating paracrine role for FGF in
the growth of some tumors [121,122]. Furthermore, when fibroblasts were
transfected with a gene posessing a signal sequence fused to bFGF, large
tumors grew in nude mice [123]. Antibodies to bFGF administered systemi-
cally resulted in approximately a 75% decrease in the size of these tumors
[123].

An important question remains: How can bFGF, which is not normally
secreted, become a paracrine vascularization factor? Several possible mech-
anisms of FGF release by tumors have been postulated, including tumor
necrosis, tumor cell leakiness, acquisition of signal peptide, and induction of
multidrug resistant genes that encode for proteins that are involved in FGF
export. A possible mechanism involving differential bFGF export by normal
and tumor cells has been reported [124]. In these studies, transgenic
mice carrying the bovine papilloma virus genome (BPV-1) at first produced
benign avascular dermal fibromatoses. Eventually, there was a transition
from the avascular tumors to the formation of highly vascular malignant
fibrosarcomas. The switch from avascular to vascular tumors was ac-
companied by a change in bFGF release profiles. Basic FGF was expressed
in both normal dermal fibroblasts and in benign fibromatoses but was cell
associated, a typical property of bFGF that has no signal peptide for
secretion. In contrast, the fibrosarcoma cells had very little cell-associated
bFGF and a substantial amount of exported bFGF-like activity, which was
neutralized by anti-bFGF antibodies. Since bFGF is angiogenic, it may be
that its export by fibrosarcoma cells results in a paracrine stimulation of
blood vessel growth in the tumors. Tumor angiogenesis might not occur in
the avascular fibromatoses because bFGF is not released by these tumor
cells. The mechanism by which the fibrosarcoma cells export bFGF is not
understood. The cells might have special pathways for exporting proteins, or
alternatively, the bFGF in these cells might be altered structurally and
exported. The precise nature of this mechanism is not understood to date.

Conclusions and future directions

Members of the FGF family are important modulators of tumor growth. The
four FGF oncogenes — int-2, hst/K-fgf, FGF-5, and FGF-6 — are the most
likely candidates to be involved in stimulating autocrine tumor growth and
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tumor neovascularization because they are secreted. The role of aFGF and
bFGF in tumor growth is less clear. Since they are not secreted proteins, it is
not clearly understood how they could be involved in cell transformation.
Recent studies have suggested some possible mechanisms that allow aFGF
and bFGF to be involved in tumor growth. For example, internal autocrine
loops may occur in which aFGF and bFGF interact with their receptors
within cells. Another possible mechanism is the alteration of FGF structure
or of the tumor cell that allows specific FGF export, resulting in the stimula-
tion of tumor angiogenesis.

Given the possibility that FGF is involved in tumor growth, anti-bFGF
therapy might have therapeutic value. Several strategies have been attempted.
These include the following: (1) the use of neutralizing antibodies that
would inhibit exported members of the FGF family [123], (2) the use of
antisense oligonucleotides that inhibit FGF synthesis. Basic FGF antisense
has been used to inhibit melanoma growth [125]. (3) The use of drugs that
inhibit the interaction of FGF with its receptor. Suramin has been shown
to inhibit FGF-FGF receptor interactions and to revert the phenotype of
tumors dependent on FGF production [126,127]. (4) The use of reagents
that degrade cell surface heparan sulfate proteoglycans (HSPG). It has been
shown that bFGF needs to bind to cell surface HSPG in order to be
mitogenic [9,26,128]. Inactivating cell surface HSPG with heparinase or with
specific peptides that bind to HSPG might be a way to block the mitogenic
activity of FGF family members in a tumor. (5) The use of angiogenesis
inhibitors. These compounds include a synthetic laminin peptide [129], AGM
1470 {130-133]), minocycline {134], thrombospondin [135,136], cartilage-
derived inhibitor {137], penicillamine [138,139], platelet-factor 4 [140], and
modulators of collagen metabolism [141]. Angiostatic steroids with or
without heparin [142,143] or with betacyclodextrin-tetradecasulfate [144]
have also been found to be potent angiogenesis inhibitors. The extent to
which these angiogenesis inhibitors interfere with FGF expression remains
to be elucidated.

The presence of FGF family members in tissues and biological fluids
[145-147] may have diagnostic value. Methods that could be used to detect
these growth factors include immunocytochemistry of tumor tissue, in
situ hybridization to detect FGF family transcripts, and ELIZA analysis
[148,149].

There is a great deal still to be learned about the FGF family, including
questions of structure, localization, biosynthesis, regulatory mechanisms,
and involvement in angiogenesis. More detailed information regarding these
FGF properties might continue to provide information that can be translated
into further advances in the diagnosis and therapy of benign and malignant
diseases.
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